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Abstract—The sextic formalism of Stroh for anisotropic elasticity leads to the eigen-relation N§ = p§
in which N is a 6 x 6 real matrix. The orthogonality and closure rclations as well as many other
relations involving the eigenvalues p and the eigenvectors § are based on the assumption that N is
simple or semisimple so that the six eigenvectors §, span a six-dimensional space. Problems arise
when N is non-semisimple. In fact there are problems even when N is almost non-semisimple. We
present a modified formalism which is valid regardless of whether N is simple. almost non-semisimple
or non-scmisimple. The modified formalism does not apply when N is semisimple.

[. INTRODUCTION

The sextic formalism for anisotropic elasticity originally due to Stroh[1, 2] assumes that the
6 x 6 rcal matrix N is simple. This means that the cigenvalues p, (2 = 1,2,...,6) of N arc
distinct so that there are six independent cigenvectors §,. The formalism applies also to
scmisimple N in which there is a repeated cigenvalue, say py = p,, but there exist two
independent cigenvectors & and &, When N is non-semisimple, i.c. when py = p, and there
exists only one independent cigenvector associated with p, and p,, the Stroh formalism
does not apply. Anisotropic elastic materials which lead to a non-semisimple N are called
degenerate materials. Isotropic materials are a special group of degencrate matcrials.
Nishioka and Lothe[3, 4] studicd the limiting behavior of the Stroh formalism when the
malterial becomes isotropic. Lothe and Barnett[5] and Chadwick and Smith[6] introduce the
generalized cigenvectors and obtain an important result that some relations for simple N
continue to hold for non-semisimple N if the eigenvectors are replaced by the generalized
cigenvectors. However, as we will see in this paper, not all relations for simple N can be
converted to relations for non-semisimple N by simply replacing the eigenvectors by the
generalized cigenvectors. Examples will be given in this paper. The main purpose of this
paper however is to look at the situation in which N is almost non-semisimple.

When N is simple or semisimple, the Stroh formalism applies. When N is non-semi-
simple, the genceralized eigenvectors take the place of eigenvectors. The transition of the
formalism from a simple or semisimple to non-semisimple N is not continuous. This suggests
that some difliculties may arise when N is almost non-semisimple. [ndeed, as we will see in
Scction 2 where we summarize the Stroh formalism, when N is almost non-semisimple the
magnitude of the orthonormalized eigenvectors associated with the almost equal cigenvalues
is very large and becomes infinite as the two eigenvalues become equal. To overcome this
difliculty we present in Section 3 a modified sextic formalism which applics to almost
non-scmisimple N. The formalism remains valid when N is non-semisimple. In fact the
assumption of almost non-semisimple is not required in the derivation and hence the
formalism applics to simplc N as well. The modificd formalism however docs not apply to
N which is semisimple.

In Section 4 we show the conversion from the Stroh formalism to the present modified
formalism. With the conversion many relations which are valid for simple or semisimple N
can be rewritten for non-semisimple or almost non-semisimple N. Applications to sum rules
are given in Section 5. Finally we show in Section 6 how one can split the generalized 6-
vectors & for almost non-semisimple N into two 3-vectors a and b and determine them
separately.
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2. THE STROt SEXTIC FORMALISM

In a fixed rectangular coordinate system {v;.x.. x,) let the stress g,; and strain &, of
the material be related by

a,, = Cuvén, ()

(V i T (*“A‘ = C:/\k = CA-:I (2)

where (,;, are the clasticity constants. Unless stated otherwise repeated indices imply

summation. For two-dimensional deformations in which the displacements w, (K = 1, 2.3},
depend on x, and x; only. a general solution for w, cun be written in matrix notation as

u=af(:) {(3)

I =X, +pX; (+)

in which f is an arbitrary function of z. The etgenvalue p and the eigenvector a arc
determined from(7]

Dip)a =0 (3
D(p) = Q+p(R+R)+p’T (&)

where superscript T stands for the transpose and the 3% 3 matrices Q, R and T are given
by

O, = C, . R, = . 1, =C,,, (7)

Matrices Q and T are symmetric and positive detinite il the strain energy is positive.
Introducing the new vector

|
b= (R'+pla = - /’(Q—k/)R)u (8)

in which the second equality comes Trom eqn (5). the stresses are obtained from the stress
function ¢ by{1,2
G, = —Cihloxg, ad. = 0Ny 9

¢ = bf(2). (10)

Equations (8), and (8), can be written in the standard cigen-relation as

NE = pé (th
N, N, o [a
= N‘ N' ’. g: [l)] (l:)
= LA -
N, = =T 'R'. N, =T t= N, N
N, = RT 'R'-Q =N (1)

Thus & is the right cigenvector of the 6 x 6 real matrix N. The left cigenvector i satisties
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Ny =pn. (14)

01
[0 ]

where [ is the identity matrix. it can be shown that

Introducing the 6 x 6 matrix J by

IN = (JN)T = NTJ. (16)

From eqns (11}, (14) and (16) we may set without loss of generality

. [b
'r=Js—L] (17)

Since p cannot be real if the strain energy is positive[7], we have three pairs of complex
conjugates for pas well as for § and o Il p,, &, and 5, (2 = L,...,6) are the eigenvalues
and the cigenvectors, we let

Proy = Pos Imp, > 0}
= - o o=
‘f!&‘:ét' ey =14,

1.2,3 (18

where Im denotes the imaginary part and an overbir stands for the complex conjugate.
When N is simple or semisimple, &, span a six-dimensional space and are orthogonal to .
Since £, obtained from eqn (1) are unique up to a multiplicative constant, we may normalize
&, such that (with g, determined from egn (17))

"[‘IA‘:I = ‘s'xﬂ (Iq)

where 8, is the Kronecker delta. The orthonormal relations can be written in matrix
notation ias

vViu=1 (20)

in which the 6 x 6 matrices U and V are

U"’[éh $. 53' 51‘ 5:» f—%}
. - - . 21
V=[n. n:" m. 4. 2 40l
If we introduce the 3 x 3 matrices
t\ = [a;. a:. a;}. B = [h], b:. h;] (22)
we may write U and V as, using eqns (12), and (17)
A A
= [ = 2
U {B 8]' Y = JU. 23)

Equation (20) implies that V" and U are the inverse of each other and hence the order of
the product can be interchanged. We have
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Uvi =1 (24)

or, carrying out the matrix multiplications using eqns (15) and (23)
AAT+AAT=0=BB"+BB'

“
BAT+BA" = 1 = AB" + AB". (23)

These are the closure relations. Equations (25) tell us that there exist real matrices H, L
and S such that

H=2AA" = H'
L=-2BB' =L" (26)
S = i(2AB'—1).

We sce that H and L are symmetric, and can be shown to be positive definite if the strain
energy is positive[6]. The three real matrices H, L and S play important roles in the problems
of anisotropic elasticity and surface waves (sce, e.g. Refs [6, 8-11])).

The above formalism from eqns (19) to (26) are valid if N is simple or semisimple
because we have six independent ecigenvectors &,. If N is non-semisimple, say we have
pi =p:and also §, = &, we do not have six independent etgenvectors to span the six-
dimensional space. Consequently, eqns (19)-(26) are not valid. Isotropic materials are the
well-knnown example of having a non-semisumple N for which p, =p,=7and &, = .. In
fact py = falso but &, is independent of €.

One ¢ncounters difficultics not only when N is non-semisimple but also when N s
almost non-semisimple. This means that p, and p, arc almost cqual as arc &, and &,. To
see the problems which may arise when N is almost non-semisimple, let &, and &, be unir
vectors satisfying eqn (11) for p = p; and p,, respectively. Assuming that py, p, are almost
cqual as are &, &, we let

§, = El +£(d)y. d=py—p (27)

in which y is a unit vector and ¢ is a function of 8 such that as & approaches zero so does
. To have an orthonormal system we sct

(28)

where k|, &, are complex constants to be determined. Application ofeqn (19) forx, i = 1.2,
leads to

k%é:.'lfl =1
k3(E1IE + 20y " 98 ety dy) = 1 (29)
klk:(‘f“él +*¢yr~]£|) = 0.

Ignoring the £ term when 9 is small, we have

k

tora

= —ki=(ey"JE) . (30)

Hence &, and k, are of order &~ ">, Consequently, the orthonormalized vectors §; and &
arc very large vectors when & is small and become unbounded when § approaches zero. This
creates problems for a numerical calculation of the eigenvectors when N is almost non-
semisimple. Equations (30) also tell us that k; = +ik; and hence, as § — 0. the ortho-
normalized eigenvectors &, and &, are not exactly cqual but differ by a factor of £ The
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statement that &, and &, are almost equal should therefore be interpreted as almost linearly
dependent.

In the next section we present a modified formalism for the case when N is almost non-
semisimple. We will see in the derivation that the assumption of almost non-semisimple is
unnecessary. The eigenvalues p, and p, need not be almost equal. The only requirement is
that if p, and p, are almost equal. so are &, and §,.

3. MODIFIED SEXTIC FORMALISM

We assume in this section that there is a possibility that p, and p, are either equal or
almost equal. When that happens, we assume that &, and §, are also equal or almost equal.
By eqns (18) p, and p; as well as §, and &, are equal or almost equal. It suffices to discuss
the modifications required for §, and &, only.

From eqn (11) we have

N&Y =P|§‘i} a1

N&: = p.&: i
in which &} and &} are scalar multiples of &, and &, obtained in the last section. The scalar
multiples are not unity or +i because of a different orthonormal system we are introducing
here. Instead of eqns (31) we consider

NE; = pidi } .
NE; = pait i .
where
£ = (¢3—¢';)/«5} .
£ = & +08, (
d=pr—p. (34)

Equation (32), is obtained when we subtract eqn (31), from eqn (31), and divide the resulting
equation by (p.—p,). Likewise, we will consider for the left eigenvectors the following
equations:

Nin\, =pin, +'l;} 35)

N3 = pans )
in which

N = (né—n‘i)/é} 3

i = n3—on. (36)

Thus instead of §3. &3, 77, 73, we will use &7, &3, ', #3. They are determined from eqns (32)
and (35). The vectors §; and 57} are not employed, but their relations with &}, &% 1. 73 as
given by eqns (33) and (36) will be useful in establishing certain identities. Hence & can be
arbitrary, zero or non-zero. Instead of solving eqn (35) for #, and #3, they can be obtained
from §, and &, by applying eqns (17) and (36). We have
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n, =J& | 37
”::J:i‘*()“j:}'s () )

The new vectors satisfy the following relations:

n: ’:’:‘"'I’rr:i zov'l';T:l: (38)

n:'¢ =0 (39

Equations (38) and (39) are obtained when we pre-multiply eqns (32), and (32),. respec-
tively, by #;T and use eqn (35),. To form an orthonormal system we must have

e =1 gE =1 gllE =0 (40)

In view of eqn (38), we see that we do not have to consider all three equations in eqns (40).
Since &, & n'. n; obtained from eqns (32) and (33) are not unique, we will show how one
can obtain a set of vectors so that eqns (40) are satistied.

Let &, & oy i s satisfy eqns (32) and (35). They also sutisty eqns (38) and (39), Tt can
be shown with the use of egns (37) that

& zkx‘:x

& =k, E+k0E

Wy =kopy AN +1)
=k

also satisty egns (32) and (35) in which & L &, and &% are arbitrary complex constants which
arc related by

/(: = k[ *(‘)II\’_\ (42)

tmposition of egns (40), (40), and use ofeyn (39) lead o

k,“‘='i}'¢f,‘. /":l:'i:lé" (43)

With egns (43), eqn (38) can be written as
kyt—k,t =8t (44
If we solve Tor (k,— 4 ) from egn (44) and substitute it into eyn (42) we obtun
Ky = —kikiGq §0/tk, +ky). (45)

When 8 # 0, the orthogonal relation of &, 4, (x = 1,2) and eqns (33), and (36), assure
us that 47", and ril'cf} do not vanish. Henee &, and A, exist. In egn (45) &, + &, vanishes
it k, = —k,. However, k, obtained from egn (43), is not unique in the sense that if &, is o
solution so is —k . The same statement applies to &, and one can always choose the signs
so that &, = k,instead of &, = —k,. Henee £5 also exists.

When & = 0, eqns (43) and {(44) can be written as
kyt=ky? =’i;"fi = 'i:r'f':

]

|
>
=

The third cquality in (46) comes from eqn (38). The existence of orthonormalized generalized
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eigenvectors are assured by the theories on non-semisimple matrices[12]. Note that egns
(46) also apply to the case when 6 # 0 and k] = k:.
With &,. &, n. i properly orthonormalized. it can be shown that

VU =1 7

in which
(43)

In eqns (48) &, and g, are identicul to the ones obtained in the last section. If we introduce
the 3 x 3 matrices

A' s [a"‘ 3". 33}‘ B’ = {hh b’u bx} (49)

we have

AN AY AV
T = = 1 Vo=, I
v [B' B’] {B’\’ B'Y} (50

0 1 0
Y=|1 & 0|=Y" (5H
0 0 i
It 15 useful to know that
—-5 1 0
Y''=| 1 0 of=(Y ") (52)
0O 0 1

and hence Y ' = Ywhend =0,
As in the last section the product of U and V' in eqn (47) can be interchanged. That
Is

U:vvr'l' - ! (53)
or, carrying out the matrix multiplications

AYATHATVA =0 =RBYB '+B VR 1
AYBT+ATB =1 =BYAT+R VA" 4

This is the modified closure rclations for eqns (25). Using the arguments following eqns
(25) one is tempted to write
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H=2iA'YAT
L= —-2BYBT (
S =i2A'YBT-D.

w
wn
—

When N is non-semisimple, i.e. when ¢ = 0, the validity of eqns (55) can be established
easily by using the relation[8]

(N)E, = £&, (56)

in which the "+ " signis forx = 1. 2, 3, the " — " sign is fora = 4, 5, 6, and

(NY = [_SL SHT] (57)

Equation (56) certainly applies to &1, &, and &3, & Lothe and Barnett[5] and Chadwick
and Smith[6] show that it applies to €5 and § also. Therefore, we have

R IV N .
<N>U=z|:B, —B']‘ (58)

If we post-multiply both sides by V' and use eqn (53), we obtain

i

(ANYAT—A YA
L= —i(BYB"-BYB") (59)
S=iAYBT-A'TBT).

Lquations (54) and (59) lead to eqns (55).

We will show in the next section that eqns (55) hold also for 8 # 0. In closing this
section we point out that to convert egns (26) to egqns (55) one cannot simply replace A, B,
by A’, B’. The matrix Y has to be introduced as shown in egqns (55).

4. CONVERSION FROM THE STROH FORMALISM TO THE MODIFIED FORMALISM

If eqns (53) hold for any J, comparison with e¢qns (26) suggests that the following
conversion relations hold:

AA" = A'YA”'
BB' = B'YB'' (60)
AB' = A'YB"",

We have proved that egns (55) and hence eqns (60) hold for 6 = 0. It remains to prove that
egns (60) hold for d # 0.

To this end, we will derive the relations between &), &5, and &,, &,. Since &, 9, 2 = 1.2,
are scalar multiples of &, n,, we et

§r=7yE. §2=*"§:} (61

Ny=70. N =8,

in which eqn (17) has been used and y, ¢ are constants to be determined. From egns (33),
and (36), we have
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$= (85:-—?§n)/§}

. < (62)
7, = (en—ym /0.

Substituting eqns (61) and (62) into eqns (40),, (40), and making use of eqn (19), we obtain

yi=-0, =4 (63)

without identifying which one of the two solutions is for y. Therefore

gi=7v5 } (65)
=7 Fig)
and A’ from eqn (49), has the expression
A=y H(a Fiazda) (66)
A similar expression can be written for B, Let
H
vy 0
E=}0 Ty ' of (67)
0 0 |
We then have
A" = AL, B’ = BE. (68)
By a direet caleulation it can be shown that
EYE' =1 (69)

Equations (68) and (69) lead to the ideatities in eqns (60). This completes the proof that
egns (60) and hence eqns (55) hold for any 4.

With cqns (60) onc can convert relations which are valid for simple or semisimple N
to relations for non-semisimple or almost non-semisimple N. For instance, the impedance
matrix M is defined as{1 3]

iM = BA "', (70)
Since
BA ' = (BB")(AB") ! n
using eqns (60) we obtain
iM=BA"". (72)

This is one of the few relations for which the conversion is achieved by a simple replacement
of A,Bby A", B".
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SOSUM RULES

Several sum rules involving the eigenvalues p, and cigenvectors &, have been reported
i the fiterature{ 3, 140 13] The sum rules involve the summitions of p, and &, which can be
WrIien o matnx notation as one ol the following{ o]

AP'AT APB'. BPA'. BPBT )

APA L APB . BP'A . BPB ) e
in which nis an integer. positive or negatuve. and P s the diagonal matrix
po 00
P=10 p. 0} (74)
g 0 p

Fach of the products in (73) can be expressed in terms of the real matrices H. L, S and N,
[=1.2.3 By o direet caleulation, it can be shown that

10 S0 DN I 0F Lt DR L (75)

i which By given i egn (67) and, by cqn (6Y)

: b 0
| DI Y () L () (76)
(0 0 |
poo b0
Polo opo 0 (77
0 ooy

W see that Pois the Jordan canonical matris when poo= po From egns (68), (69) and (75)
we have the following conversion relutions

AP'AT = AP"YA!
AP'BT = APYR!

b
j
{,
|
BPB' = BP"YB' |

BP'A' = BP YA (78)
and

APPA TS AP )

AP'B = APTR 1

BP'A = BPA [ (79)

BP'B ' = BP'B

Equations (78) suggest that P7Y is symmetric. Indeed. it is readily shown that
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P oy. O
P"=10 p% O (80)
0 0 p
where
" (P =D pr—p), if pa#p
v,.:—:zpz‘*p%“*:{ RV ‘ 81)
& npi™t, if p.=p;.
Hence
Y Py 0
P"Y =|p3 &% 0|=(P"Y)" (82)
¢ 0 9

6. SEPARATION OF §: INTO g} AND b}

The Stroh cigen-relation was in fact based on the earlier version, eqns (5) and (8)
proposed by Eshelby ef af.{7]. Thus instead of finding the 6-vector § from eqn (t1) one
could find the 3-vectors a and b from eqns (5) and (8). This may have some advantages in
a numerical calculation because not only the matrix D is smaller than N, one doces not have
to find the inverse T ' as shown in eqns (13). When N is non-scmisimpie, so is D(p) of eqn
{5). This means that when py = py,ay = a,. To modify egns (5) and (8) for the cases when
D{p) is non-semisimple or almost non-semisimple, we follow the derivation of cqns (32).
We obtain

D(p)ai =0 } -
D(p2)ay+ {R+RF) 4+ (p, +p) Thai = 0, )
As to the moditication of eqn (8), we have
' T i l o
b; = (R “{"‘plT)ag e };"Q”{"R a,
1
(84)

: I !
1= (R"+ {l‘)a3+Ta"’=-—(~~" +R)a3+ ~—-Qu.
¢ 1 P:Q PIP:Q x

Equations (83) and (84) provide ay, a4, b} and b, which form the components of & and &5.
One then finds g, g3 from eqns (37) and orthonormalize the eigenvectors as outlined in
Scction 3. To complete the system, one finds a,, b; of &, from eqns (5), (8), 4, from eqn
(17) and normalize §, using eqn (19).

For isotropic materials we have p, = p, = {, a, = a,, and the outlined procedure leads

to
k( -'i!fk; 0
A= f‘kg “""'\'k‘ Q (85)
0 0k
2%k, k, 0
B' = -_'?'kl ""ikt 0 (86)

0 0 ik
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. 1 —-i (=0 3—4v
kls k= - l= C=
T 8u(l1—v) 2u du * 2 (87)

[P

where g and v are, respectively. the shear modulus and Poisson’s ratio. With A’, B” given
by eqns (85). (86) and Y by eqn (51) with J = 0. eqns (55) provide H. L and S for isotropic
materials. The non-zero elements of H. L and S are

34y l\
H,, 2 oy = p
It
Ly=L.= —v Lyy=np & (88)
S S 1—2v
b= Syl J

This agrees with the results obtained by using the integral formalism in Ref. [8).

7. CONCLUDING REMARKS

The modified sextic formalism presented here applies to any matrix N which is simple,
almost non-semistmple or non-semisimple. The formalism is particularly useful when N is
non-semisimple or almost non-semisimple. Thus instead of the integral formalism{8]. cqns
(55) ofler an alternate way of obtaining the three real matrices H, L, S when N is non-
semisimple or almost non-semisimple,

We did not consider the possibility of 4 non-senusimple N in which p, = p, = p, and
& = ¢, =&, We have not scen such an example and it appears unlikely that there exists
a real material which leads to py=p, =p, and &, = &, = &,. For isotropic malcrials
pro=py=pyv=ibut & =&, # &, and hence the modilicd formalism applics to isotropic
materials as shown in the last section.,
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